Bairstow’s Method

e Theory: In order to extract a real or complex root of a polynomial, Bairstow’s method given
in the year 1920, attempts to extract a quadratic factor of the form x* + px+ q from the
polynomial P(x). In general if P(x) is divided by x*+ px+ q we obtain a quotient of degree (
n—2) of the form,

bo X2 +by x®3) +++-+by3 X +bn
and a linear remainder of the form Rx+ S . Our problem then is to find p and q such that
R(p,9)=0; S(p,q) =0
Starting with a guess of p and ¢, we find corrections A p and A q, so that
R(ptAp, q +Aq) =0 ; S(p+Ap, q +tAq) =0

Expanding in Taylor’s series and truncating after the first-order terms, as in Newton’s
method, we get

oR oR
R(p, @)+ P Ap e Aq=0 ;

S A
S(p, q)+5 Ap+£ Aq =0

The pair of equations yield expressions for Ap and Aq. Supposing that Ap and Aq have
been computed, the procedure is repeated for the corrected values p+Ap and q +Aq.

In order to compute the coefficients bo, b1, ba, -+, ba-2, R and S, we use the identity
aox" +aj x4y = (x2 + px+ q) (box™2 +by X" 3+ +bpo)+ Rx+ S
Comparing like powers of x on the two sides, we obtain
ao = bo
ar = by + pbo

a> =bz + pb1 +qbo




an2 =bno+t pbn—3 +qbn—4
dn—-1 — R+ pbn*Z +qbn73
dn = S+qbn72

The quantities bo, bi---, b, R and S can be obtained recursively from these equations.
Defining

b-> :=b-1 :=0;
bn-1 =: R;
bn + pba-1=:' S
The recursive solution is then,
bk =ak — pbk-1 —qbk—2, (k=0,1,2,---,n) ... (D)

If we insert the newly defined expressions for R and S in the equations for Ap and Aq, we
obtain

dbn—-1 dbn—-1

( 39 )Apt ( » )AQ +bn-1=0

dbn dbn-1 dbn  dbn-1

o +bn-1) Ap + (E-i-p ” ) Aq+ bn + pba-1=0

(5, TP

The second equation reduces owing to the first, leading to the pair

dbn-1 dbn-1 N
P Ap + P Aq +by-1=0

And

dbn abn N
( E +bn-1 )APT Aq+ bn =0

The partial derivatives of bk are given by,

( Obo/dp) = (8b.1 /dp) = (8b-2 /3p)=0

And




obik/0q =—p (Obk-1/ 0q) —bk-2—q (Obx—/ q) ;
(Obo /0q) = (0b-1/ 0q) = (0b-2/ 0q) =0
Eliminating by-1 from the above two equations,
(Oby/ Op) + p(Obx-1/ Op) +q(Obk-2 /0p) =0(bx+1 /0q) + p(Obk/Oq) +q(Fbx-1/ 6q)
This relation holds for arbitrary p and q and so equating the coefficients one must have
(Obx/ 0q) = (Obk-1/ Op) =—ck-2, (k=0,1,2,---,n)

With the introduction of quantities ck , the two equations for the partial derivatives of by
pass in to the forms

Ck-1 =bk-1 — PCk-2 —(Ck-3; Ck-2 =bk-2 — PCk-3 —(Ck-4
or equivalently,
Ck =bk — pck-1 —qCk-2, (k=0,1,2,--,n) ....(1a)
with c2 =c.1 =0

Equation (1.a) has a form similar to Eq. (1) and ck is computed from by in exactly the same
way as by from ax . With the partial derivatives of bk determined in this manner, the pair of
equations for Ap and Aq become

Cn2Ap+Cn3Aq =bn-1
(Cn-1 —bn-1)Ap+cn2Aq =bn
Solving the two equations we finally obtain the corrections
Ap=bi-1 Cn2 —bn n3/c? 12 —Cn-3(Cnet —bn-1)
AQ=bn cn-2 —bn-1(cn-1 —bn-1)/ ¢ n2 —Cn-3(Cn-1 —bne1) ....(1.b)

It is easy to program the computation of bk and cx following Egs. (1) and (1.a). If the
starting values of p and q are not too bad the iterations will converge quadratically as in
the Newton’s method. The termination of iterations can be based on the smallness of |R|

and |S |,or that of V(b2s.1 +b2,).If nothing is known about the starting values of p and g, a

search operation can be performed over range of values and select the pair that makes
V(b2 +b%,) the smallest.

On successfully separating the quadratic factor, the deflated polynomial boXn-2 +b1 Xn-3
+:+++bn-2 =0 can similarly be treated for finding all the roots of the original equation P(x)




o Algorithm:

. Enter the degree of polynomial n.

. Enter the coefficients of the polynomial from the max power of x.

. Enter the initial values of U & V of the quadratic factor X?>+UX+V.

. If n> 2 then call the subroutine BAIRSTOW.
Set DO=1, D1=-U, D2=-V

. Call subroutine ROOT.
Calculate the roots of the polynomial.

. If n=2 then call subroutine ROOT for finding the roots of the quadratic equation.
Else find the root of a linear equation in case of n=1.

. Display all the roots.

. Stop the program.




Programming:

!

BAIRSTOW METHOD

REAL U0,V0,U,V,A,B,D0,D1,D2,R1,R2,X
INTEGER N

DIMENSION A(10),B(10)

WRITE(*,*) 'ENTER DEGREE OF POLYNOMIAL'
READ(*,*) N

WRITE(*,*) 'ENTER POLYNOMIAL COEFF.'
READ(*,*)(A(]),I=1,N+1)

WRITE(*,*)ENTER INITIAL VALUES OF U & V'
READ(*,*)U0,V0

55 IF(N.GT.2) THEN

CALL BAIRSTOW(N,A,B,U0,V0,U,V)

DO=1

D1=-U

D2=-V

WRITE(*,*)'The Roots are'

CALL ROOT(D0,D1,D2,R1,R2)
N=N-2

DO 120 I=1,N+1

A(D=B(1+2)

CONTINUE

Uuo=uU




Vo=V
GOTO 55

ENDIF

IF(N.EQ.2) THEN

CALL ROOT(A(3),A(2),A(1),R1,R2)
ELSE

X=-A(1)/A(2)

WRITE(*,*)X

ENDIF

STOP

END

SUBROUTINE BAIRSTOW(N,A,B,U0,V0,U,V)
INTEGER N

REAL A,B,U0,VO0,U,V,DU,.DV

DIMENSION A(10), B(10), C(10)

B(N+1)=A(N+1)

B(N)=A(N)+U0*B(N+1)

DO 25 I=N-1,1,-1
B(D)=A(I)+U0*B(I+1)+VO0*B(I+2)
CONTINUE

C(N+1)=0

C(N)=B(N+1)

DO 20 I=N-1,1,-1
C(I)=B(I+1)+U0*C(I+1)+V0*C(I+2)

20 CONTINUE




D=C(2)*C(2)-C(1)*C(3)
DU=-(B(2)*C(2)-B(1)*C(3))/D
DV=-(B(1)*C(2)-B(2)*C(1))/D
U=U0+DU

V=V0+DV
IF(ABS(DU).GT.0.0000005 .AND. ABS(DV).GT.0.0000005) THEN
U0=U

Vo=V

GOTO 100

ENDIF

RETURN

END

SUBROUTINE ROOT(A,B,C,R1,R2)
REAL A,B,C,R1,R2,CHECK
CHECK=B*B-4*A*C
IF(CHECK.LT.0) THEN
R1=-B/(2*A)
R2=SQRT(ABS(CHECK))/(2*A)
WRITE(*,1)R1,R2
FORMAT(1X,F7.4,+.F6.3,7)
WRITE(*,2)R1,R2
FORMAT(1X,F7.4,-'F6.3,1)

ELSE IF(CHECK.EQ.0) THEN

R1=-B/(2*A)

R2=R1




WRITE(*,*)R1,R2
ELSE
RI1=(-B+SQRT(CHECK))/(2*A)

R2=(-B-SQRT(CHECK))/(2*A)

WRITE(*,*)R1,R2

ENDIF

RETURN

END




e Qutput:
ENTER DEGREE OF POLYNOMIAL

5

ENTER POLYNOMIAL COEFF.

12
ENTER INITIAL VALUES OF U & V
0
4
The Roots are
1.425335  -1.425335
The Roots are
.0000+ 1.979i
.0000- 1.9791
1.000000

Stop - Program terminated.

Press any key to continue




o ADVANTAGES OF BAIRSTOW METHOD:

1. The major advantage is that it has the capabilities of returning of both real and
complex roots, and it may take a long time, but it doesn’t fail.

2. An advantage of the method is that it uses real arithmetic only.

3. Since it is a 2nd order method, convergence is relatively fast.

e DISADVANTAGES OF BAIRSTOW METHOD:

1. The farther the starting values from the roots, the longer it takes to converge.

2. Only works for polynomial functions. Really hard to implement and understand.




